Moving Closer to End-to-End Continuous Bioprocessing

By Fletcher Malcom on May 1, 2021

The past few years have brought significant cost and competitive pressures to biopharmaceutical manufacturers. Process intensification and integration have allowed manufacturers to address these challenges, improving yields and reducing timelines.

Conditions are now set for change. “For monoclonal antibodies, outputs continue to increase, kilograms per batch are getting lower, and we’re getting higher titers out of cell cultures. In addition, there is a need for more flexible, adaptable manufacturing plants, particularly multiproduct plants, that can be run more flexibly,” says Darren Verlenden, head of bioprocessing at MilliporeSigma.

More companies are moving beyond intensification and evaluating continuous processing, which would usher in a future of lower manufacturing costs, real-time product release, and predictive control. “Continuous bioprocessing promises to transform biomanufacturing by reducing inter-campaign downtime, removing time- and labor-consuming steps, and reducing risk by chaining or combining serial steps in current processes,” says Phil Vanek, chief technology officer at Gamma Biosciences, which specializes in tools and technologies for advanced biotherapeutics development and manufacturing.

However, Vanek says, “in order for continuous biomanufacturing to work, we need to think about each manufacturing process in its entirety and seek areas where product can be harvested in real time without disrupting the ongoing process.” He visualizes highly productive expression systems under tight process control, chained to efficient cell harvesting and subsequent downstream technologies, which can be developed into modular continuous biomanufacturing platforms, all within a highly efficient and compact footprint. An example of this, he says, is Univercells Technologies’ NevoLine biomanufacturing platform for intensified and automated viral production.

Focus on perfusion

Currently, most companies are applying continuous processes upstream, particularly to perfusion. Within 10 years, such efforts are expected to drive reactor productivities from 0.05–1 g/L per day to 0.5–10 g/L per day (1). Technology providers, including Cytiva, Sartorius, and MilliporeSigma have all released new automated perfusion systems and bioreactors. However, the continuous concept is also being developed downstream, enabled by new and improved alternatives to traditional chromatography. WuXi Biologics is using continuous perfusion and downstream processing in its WuxiUp platform…

This article originally appeared on

Read the full article